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Abstract. Scene interpretation systems are often conceived as exten-
sions of low-level image analysis with bottom-up processing for high-level
interpretations. In this contribution we show how a generic high-level in-
terpretation system can generate hypotheses and initiate feedback in
terms of top-down controlled low-level image analysis. Experimental re-
sults are reported about the recognition of structures in building facades.

1 Introduction

In recent years, growing interest in artificial cognitive systems has brought about
increased efforts to extend the capabilities of computer vision systems towards
higher-level interpretations [2, 13, 17, 15, 6, 5, 9]. Roughly, a high-level interpreta-
tion can be defined as an interpretation beyond the level of recognised objects.
Typical examples are monitoring tasks (e.g. detecting a bank robbery), analysing
traffic situations for a driver assistance system or interpreting aerial images of
complex man-made structures. While existing approaches to high-level inter-
pretation differ in many respects, they have in common that prior knowledge
about spatial and temporal relations between several objects has to be brought
to bear, be it in terms of probabilistic models [15], frame-based models called
aggregates, logic-based conceptual descriptions [13], Situation Graph Trees [12]
or Scenarios [4]. In the following, we will use the term ”aggregate” for meaningful
multiple-object units of a high-level scene interpretation.

In extending vision to high-level interpretations, one of the challenges is to
exploit expectations derived from high-level structures for improved low-level
processing. There exists much work addressing expectation-guided image analy-
sis [12, 16, 11, 3], but to our knowledge few vision systems with a generic architec-
ture have been proposed which allow to feed back expectations from aggregates
at arbitrarily high levels of abstraction to image analysis procedures at the level
of raw images. Nagel [1] has been one of the first to demonstrate with concrete
experiments in the street traffic domain that high-level hypotheses about in-
tended vehicle behaviour could in fact be used to influence the tracking unit and
thus improve tracking under occlusion.
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In this contribution we show how a scene interpretation system based on
aggregates, introduced as generic high-level conceptual units in [8, 14, 13], can
generate feedback in a generic manner. This is demonstrated by experiments
with the fully implemented scene interpretation system SCENIC. One of the
core mechanisms of SCENIC is the capability of part-whole reasoning, i.e. the
capability of establishing an aggregate instantiation based on evidence for any of
the aggregate parts. This allows to generate strong expectations about further
evidence for parts of this aggregate and to feed back these expectations to lower
levels. In SCENIC, this feedback process has been extended to control image-
analysis processes below the level of recognised objects which provide the input
to the high-level interpretation system.

In Section 2 we will describe the generic high-level reasoning facilities which
may lead to object hypotheses supported only by the high-level context. The
middle layer, called Match Box in SCENIC, is described in Section 3. It has
the task to mediate between hypotheses and evidence, including the initiaton of
goal-oriented low-level image analysis. Experiments and a summary are given in
Section 4 and 5 respectively.

2 Top-Down Expectation Generation

In this section we describe techniques developed in SCENIC to generate high-
level hypotheses about a scene, possibly containing incomplete information, and
propagate consequences top-down to influence low-level processing. It is shown
that this can be achieved by navigating in a highly structured interpretation
space with a fixed set of interpretation steps. Expectations are generated by
passing information obtained from evidence upwards and downwards along tax-
onomical and compositional hierarchies, and laterally to parts of the same ag-
gregate.

High-level scene interpretation in SCENIC is based on conceptual knowledge
about aggregates and their parts, embedded in compositional and taxonomical
hierarchies (illustrated in Fig. 1). With Scene as the root of the compositional
hierarchy, the conceptual knowledge base implicitly represents all possible scene
interpretations. Each concept is described by attributes with value ranges or
value sets, constraints between attributes and relations to other concepts. Spatial
attributes representing the potential position and size of the scene objects in
terms of ranges are of primary importance. They are represented as constraints
which are automatically adjusted as new evidence or related hypotheses restrict
the attribute values. Aggregate concepts have a generic structure:

aggregate name contains a symbolic ID
parent concepts contains IDs of taxonomical parents
external properties provide a description of the aggregate as a whole
parts describe the subunits out of which an aggregate is composed
constraints specify which relatins must hold between the parts
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Fig. 1. Structure of facade knowledge base used for high-level interpretation in SCENIC
Evidence can be related to object concepts by means of view concepts which specify
properties of possible object views. It is the task of the middle layer (Section 3) to
assign evidence to view concepts.

The conceptual knowledge base is completely described in terms of aggregate
structures (including primitive objects which are aggregates without parts). Note
that this does not allow constraints between parts of different aggregates. This
restriction is intended to channel information flow exclusively along the structure
of the compositional and taxonomical hierarchies.

The interpretation process obeys the following basic algorithm:

Repeat

Check for goal completion

Check for new evidence

Determine possible interpretation steps and update agenda

Select from agenda one of

{ evidence matching,

aggregate instantiation,

aggregate expansion,

instance specialization,

parameterization,

constraint propagation }

Check for conflict

end

As elucidated in [8, 14, 13], the interpretation steps allow to construct all
partial models of the knowledge base consistent with the evidence. Typically, we
are interested in a single interpretation which meets a given goal, for example,
to instantiate the concept Scene and its parts down to the primitive objects of
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the compositional hierarchy such that the views of primitive objects optimally
match evidence. Note that this allows to hypothesise objects without evidence -
indispensable for realistic scene interpretation with occlusions, deficient low-level
evidence, model limitations etc. Within the logic-based framework presented so
far, there is no preference between consistent interpretations. A probabilistic
framework providing a preference measure will be presented in a forthcoming
publication.

We now describe the information flow, based on generic interpretation steps,
which leads to top-down expectations and possible control of subsequent low-
level operations. As an exemplary situation, we consider the recognition of a
window-array based on evidence of a single window and causing expectations
about more windows in the vicinity and at the same height.

Step 1 (evidence matching): Low-level evidence is assigned to A-Window-View,
and a corresponding instance is created incorporating evidence properties
(e.g. location and shape). This step is performed by the Match Box.

Step 2 (physical-object instantiation): The view instance leads to an in-
stantiation of the corresponding physical-object concept A-Window. Image
properties are transformed into physical-object properties using constraints
between the physical-object concept and its views. This step is performed
automatically and hence not subject to selection from the agenda as other
interpretation steps.

Step 3 (aggregate instantiation): The A-Window is tentatively interpreted
as part of the aggregate Window-Array. Constraints between external prop-
erties of the aggregate and its parts are set up and give rise to the spatial
range where additional windows may be expected.

Step 4 (aggregate expansion): An additional A-Window instance is created
as part of the Window-Array, meeting the constraints between the aggregate
and its parts. While the size is closely restricted by the evidence for the
first window, its location obeys loose restrictions specified in the conceptual
description of the Window-Array. At this time, the instance is hypothesised
by part-whole reasoning and not supported by evidence.

Step 5 (view instantiation): The window hypothesis leads to the instantia-
tion of a corresponding view hypothesis with properties specified in image
coordinates. In particular, the range of possible window locations is now ex-
pressed as an image area and the window size is given in pixel size. This step
is performed automatically analog to Step 2.

Step 6 (evidence matching): The hypothesised view, restricted by constraints
in Steps 4 and 5, is matched to evidence. This allows goal-oriented low-level
image analysis meeting the restrictions of the view hypothesis. A decision
has to be made whether the hypothesis has to be refuted because of missing
or conflicting evidence.

In this report, we emphasise the use of feedback for low-level image analysis to
resolve cases of insufficient evidence. But also other kinds of analysis have to be
invoked such as occlusion reasoning, illumination and shadow analysis. All this
is the task of the Match Box.
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3 Middle Layer

The middle layer, called Match Box in SCENIC, acts as an interface between
image analysis and symbolic interpretation. Its main tasks are:

– matching low-level evidence to high-level concepts,
– confirming or refuting high-level hypotheses, and
– initiating low-level activities from high-level hypotheses.

The combination of these tasks allows the interpretation system to operate
in a feedback loop as originally proposed by [10] almost three decades ago.

Matching low-level evidence to high-level concepts is basically object classifi-
cation. There are, however, several differences which complicate the task. First,
the object classes for choice are not predefined but are influenced by restrictions
resulting from the high-level context generated in preceding interpretation steps,
typically including a ROI (region of interest) and size restrictions. Second, there
is the problem of evidence assignment: Several pieces of evidence may qualify
for the range restrictions of a hypothesis, and one has not only to choose be-
tween classes but also between evidences. The SCENIC Match Box currently
operates in a simplified setting, where preclassified evidence is matched to views
by selecting pairings with maximal spatial overlap.

Confirming and refuting high-level hypotheses is an additional aspect of the
task. Hypotheses may be false due to bad high-level interpretation choices, hence
it is necessary to compare theses hypotheses with relevant evidence. Currently,
the Match Box distinguishes between two evidence qualities, ”primary evidence”
by low-level analysis with a high significance threshold, and ”secondary evidence”
with a lower significance threshold. The idea is to initially interpret the image
based on primary evidence and invoke a refined image analysis to obtain sec-
ondary evidence only if required.

To compare a hypothesis with evidence, the Match Box has access to the view
concepts of the knowledge base. If there is evidence within the ROI matching
the evidence types of the hypothesis, the hypothesis can be confirmed. If there
is conflicting evidence, it must be refuted. If there is no primary evidence, low-
level image analysis is initiated to obtain secondary evidence. Here, the Match
Box has a repertoire of image propcessing modules (IPMs) at its disposal with
parameters which can be set corresponding to expectations.

4 Experiments

The experimental scene interpretation system SCENIC has been applied to nu-
merous images of a database of ca. 600 building facades assembled in the EU-
funded project eTRIMS (eTraining for the Interpretation of Man-made Scenes).
The thrust of the project is to develop learning methods for structured objects,
and the conceptual knowledge base of SCENIC actually comprises several learnt
concepts, including Window-Array, Balcony and Entrance [7].
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To demonstrate the feedback cycle, a rectified facade image has been pro-
cessed by a low-level image analysis procedure trained to discover T-style win-
dows. Fig. 2 shows the resulting primary evidence. As can be expected from
bottom-up image analysis of a natural scene, the results also contain several
false positives and false negatives.

Fig. 2. Evidence created with an image processing module (IPM) trained to recognise
windows.

The Match Box receives this evidence and creates window views from evi-
dence items with high confidence value. It then passes these views to the inter-
pretation system.

The interpretation system has been initiated to interpret a facade scene by
instantiating the corresponding root node of the conceptual knowledge base. The
initialisation also includes information relating image coordinates to world coor-
dinates. The first interpretation phase has the goal to instantiate all obligatory
descendants of the instantiated root node, in this case Facade and Wall.

In the second phase, the interpretation system creates physical-object in-
stances corresponding to the view instances received from the Match Box. Fur-
thermore, all aggregates which follow uniquely from the available instances are
created in a bottom-up manner. In the experiment, instances of the concept
Window-Array are created, when three windows exist which fulfil the Window-Array
constraints. The concept Window-array specifies the following information:

Number of parts is [3 to inf].

All parts have type window.

All parts have similar y-position.

Any two neighbouring parts have similar distance.

All parts have similar height.

While the preceding steps have been obligatory, the next phase deals with
uncertain interpretation decisions. The aggregates now trigger the creation of
hypotheses for not yet instantiated optional parts. In the experiment, additional
windows are searched at appropriate positions inferred from the established parts
to complement the existing rudimentary window arrays. First, established parts



7

integrated, then new parts are hypothesised if there are remaining gaps. Fig. 3
(left) shows the resulting window arrays with three gaps filled by hypothesised
windows.

Fig. 3. Left: Hypothesised window-arrays with four additional window hypotheses.
Right: Result after restarting the low-level IPM with a hypothesised region of interest.

The interpretation system now creates view hypotheses for the newly hypoth-
esised physical windows and asks the Match Box to confirm or refute these view
hypotheses. As described in Section 3, the Match Box tries to match the views
to existing evidence. In the experiment, there is insufficient evidence to confirm
the hypotheses, so the Match Box initiates low-level image analysis of the ROIs
with parameters set for weak evidence. The feedback results are shown in Fig.
3 (right): three new correct window evidences in regions where no window has
been recognised in the first run (first three from left), and one new false win-
dow evidence in the wall area on the right. This confirms all window hypotheses
generated by high-level interpretation.

5 Summary and Future Work

In this paper we have presented a generic approach for combining low-level image
analysis and high-level interpretation so that feedback to low-level analysis can
be achieved. To this end, a middle layer has been introduced which mediates
between low-level evidence and high-level hypotheses. The combination of low-
level, middle-layer and high-level techniques has been implemented in the system
SCENIC, experimental results have been presented demonstrating the use of
feedback for images with building facades. Feedback has been shown to allow a
coarse-to-fine strategy, with fine-grained analysis only where required. Feedback
also allows to invoke procedures specialised for the kinds of views which are to
be verified. For example, texture analysis can be invoked for the verification of
a wall background or an occluding tree.

In ongoing work, we integrate a probabilistic model for the compositional con-
cept hierarchy to provide a preference measure for interpretation steps. Future
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work will also deal with time-yarying scenarios, where high-level expectations
often concern future events and are particularly valuable for scene interpreta-
tion.
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13. B. Neumann and R. Möller. On Scene Interpretation with Description Logics. In
Cognitive Vision Systems, volume LNCS 3948, pages 247–275. Springer, 2006.

14. B. Neumann and T. Weiss. Navigating through Logic-based Scene Models for
High-level Scene Interpretations. In 3rd International Conference on Computer
Vision Systems - ICVS 2003, pages 212–222. Springer, 2003.

15. K. Sage, J. Howell, and H. Buxton. Recognition of Action, Activity and Behaviour
in the ActIPret Project. Künstliche Intelligenz, 3:30–33, 2005.

16. J.M. Tenenbaum and H.G. Barrow. Experiments in Interpretation Guided Seg-
mentation,. Artificial Intelligence Journal, 8(3):241–274, 1977.

17. M. Vincze, W. Ponweiser, and M. Zillich. Contextual Coordination in a Cognitive
Vision System for Symbolic Activity Interpretation. In Proc. of IEEE International
Conference on Computer Vision Systems ICVS06, 2006.


